1.



The Venn diagram, where p is a probability, shows the 3 events A, B and C with their associated probabilities.

(a) Find the value of p.

**(1)** 

(b) Write down a pair of mutually exclusive events from A, B and C.

**(1)** 

| 2. | Two bags, <b>A</b> and <b>B</b> , each contain balls which are either red or yellow or green.                                                                     |     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Bag <b>A</b> contains 4 red, 3 yellow and <i>n</i> green balls.  Bag <b>B</b> contains 5 red, 3 yellow and 1 green ball.                                          |     |
|    | A ball is selected at random from bag <b>A</b> and placed into bag <b>B</b> .  A ball is then selected at random from bag <b>B</b> and placed into bag <b>A</b> . |     |
|    | The probability that bag $A$ now contains an equal number of red, yellow and green balls is $p$ .                                                                 |     |
|    | Given that $p > 0$ , find the possible values of $n$ and $p$ .                                                                                                    | (5) |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |
|    |                                                                                                                                                                   |     |

| 3. | A manufacturer of sweets knows that 8% of the bags of sugar delivered from supplier <i>A</i> will be damp.  A random sample of 35 bags of sugar is taken from supplier <i>A</i> . |     |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|    | (a) Using a suitable model, find the probability that the number of bags of sugar that are damp is                                                                                |     |  |  |
|    | (i) exactly 2                                                                                                                                                                     |     |  |  |
|    | (ii) more than 3                                                                                                                                                                  | (3) |  |  |
|    | Supplier $B$ claims that when it supplies bags of sugar, the proportion of bags that are damp is less than $8\%$                                                                  |     |  |  |
|    | The manufacturer takes a random sample of 70 bags of sugar from supplier $B$ and finds that only 2 of the bags are damp.                                                          |     |  |  |
|    | (b) Carry out a suitable test to assess supplier <i>B</i> 's claim.                                                                                                               |     |  |  |
|    | You should state your hypotheses clearly and use a 10% level of significance.                                                                                                     | (4) |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |
|    |                                                                                                                                                                                   |     |  |  |

4. Manon has two biased spinners, one red and one green.

The random variable R represents the score when the red spinner is spun. The random variable G represents the score when the green spinner is spun.

The probability distributions for R and G are given below.

| r      | 2             | 3             |
|--------|---------------|---------------|
| P(R=r) | $\frac{1}{4}$ | $\frac{3}{4}$ |

| g        | 1             | 4             |
|----------|---------------|---------------|
| P(G = g) | $\frac{2}{3}$ | $\frac{1}{3}$ |

Manon spins each spinner once and adds the two scores.

- (a) Find the probability that
  - (i) the sum of the two scores is 7
  - (ii) the sum of the two scores is less than 4

**(3)** 

The random variable X = mR + nG where m and n are integers.

$$P(X = 20) = \frac{1}{6}$$
 and  $P(X = 50) = \frac{1}{4}$ 

(b) Find the value of m and the value of n

**(5)** 

| <br> |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

| 5. | In an after-school club, students can choose to take part in Art, Music, both or neither. |     |
|----|-------------------------------------------------------------------------------------------|-----|
|    | There are 45 students that attend the after-school club. Of these                         |     |
|    | • 25 students take part in Art                                                            |     |
|    | • 12 students take part in both Art and Music                                             |     |
|    | • the number of students that take part in Music is $x$                                   |     |
|    | (a) Find the range of possible values of x                                                | (0) |
|    |                                                                                           | (2) |
|    | One of the 45 students is selected at random.                                             |     |
|    | Event A is the event that the student selected takes part in Art.                         |     |
|    | Event $M$ is the event that the student selected takes part in Music.                     |     |
|    | (b) Determine whether or not it is possible for the events $A$ and $M$ to be independent. | (4) |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |
|    |                                                                                           |     |

| 6. | Julia selects 3 letters at random, one at a time without replacement, from the word          |     |
|----|----------------------------------------------------------------------------------------------|-----|
|    | VARIANCE                                                                                     |     |
|    | The discrete random variable <i>X</i> represents the number of times she selects a letter A. |     |
|    | (a) Find the complete probability distribution of <i>X</i> .                                 |     |
|    |                                                                                              | (5) |
|    | Yuki selects 10 letters at random, one at a time with replacement, from the word             |     |
|    | DEVIATION                                                                                    |     |
|    | (b) Find the probability that he selects the letter E at least 4 times.                      | (3) |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |
|    |                                                                                              |     |

| 7. | (a) State one disadvantage of using quota sampling compared with simple random                                                 |             |
|----|--------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | sampling.                                                                                                                      | (1)         |
|    | In a university 8% of students are members of the university dance club.                                                       |             |
|    | A random sample of 36 students is taken from the university.                                                                   |             |
|    | The random variable $X$ represents the number of these students who are members of the                                         | dance club. |
|    | (b) Using a suitable model for <i>X</i> , find                                                                                 |             |
|    | (i) $P(X = 4)$                                                                                                                 |             |
|    | (ii) $P(X \geqslant 7)$                                                                                                        | (2)         |
|    |                                                                                                                                | (3)         |
|    | Only 40% of the university dance club members can dance the tango.                                                             |             |
|    | (c) Find the probability that a student is a member of the university dance club and can dance the tango.                      |             |
|    |                                                                                                                                | (1)         |
|    | A random sample of 50 students is taken from the university.                                                                   |             |
|    | (d) Find the probability that fewer than 3 of these students are members of the university dance club and can dance the tango. |             |
|    | university dance club and can dance the tango.                                                                                 | (2)         |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |
|    |                                                                                                                                |             |

**8.** The discrete random variable X has the following probability distribution

| x        | а             | b             | С             |
|----------|---------------|---------------|---------------|
| P(X = x) | $\log_{36} a$ | $\log_{36} b$ | $\log_{36} c$ |

where

- a, b and c are distinct integers (a < b < c)
- all the probabilities are greater than zero
- (a) Find
  - (i) the value of a
  - (ii) the value of b
  - (iii) the value of c

Show your working clearly.

**(5)** 

The independent random variables  $\boldsymbol{X}_{1}$  and  $\boldsymbol{X}_{2}$  each have the same distribution as  $\boldsymbol{X}$ 

(b) Find 
$$P(X_1 = X_2)$$

| (b) Find $\mathbf{F}(\mathbf{A}_1 - \mathbf{A}_2)$ | (2) |
|----------------------------------------------------|-----|
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |

- **9.** A company has 1825 employees.
  - The employees are classified as professional, skilled or elementary.

The following table shows

- the number of employees in each classification
- the two areas, A or B, where the employees live

|              | A   | В   |
|--------------|-----|-----|
| Professional | 740 | 380 |
| Skilled      | 275 | 90  |
| Elementary   | 260 | 80  |

An employee is chosen at random.

Find the probability that this employee

(a) is skilled,

**(1)** 

(b) lives in area B and is not a professional.

**(1)** 

Some classifications of employees are more likely to work from home.

- 65% of professional employees in both area A and area B work from home
- 40% of skilled employees in both area A and area B work from home
- 5% of elementary employees in both area A and area B work from home
- Event *F* is that the employee is a professional
- Event *H* is that the employee works from home
- Event *R* is that the employee is from area *A*
- (c) Using this information, complete the Venn diagram on the opposite page.

**(4)** 

(d) Find  $P(R' \cap F)$ 

**(1)** 

(e) Find  $P([H \cup R]')$ 

**(1)** 

(f) Find  $P(F \mid H)$ 

**(2)** 

## Question 9 continued



Turn over for a spare diagram if you need to redraw your Venn diagram.

10. The Venn diagram, where p and q are probabilities, shows the three events A, B and C and their associated probabilities.



(a) Find P(A) (1)

The events B and C are independent.

(b) Find the value of p and the value of q

(3)

(c) Find P(A|B')

**(2)**